2 resultados para Thymidine

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythropoietin (EPO) has recently been shown to exert important cytoprotective and anti-apoptotic effects in experimental brain injury and cisplatin-induced nephrotoxicity. The aim of the present study was to determine whether EPO administration is also renoprotectivein both in vitro and in vivo models ofischaemic acute renal failure Methods. Primary cultures of human proximal tubule cells (PTCs) were exposed to either vehicle or EPO (6.25–400 IU/ml) in the presence of hypoxia (1% O2), normoxia (21% O2) or hypoxia followed by normoxia for up to 24 h. The end-points evaluated included cell apoptosis (morphology and in situ end labelling [ISEL], viability [lactate dehydrogenase (LDH release)], cell proliferation [proliferating cell nuclear antigen (PCNA)] and DNA synthesis (thymidine incorporation). The effects of EPO pre-treatment (5000 U/kg) on renal morphology and function were also studied in rat models of unilateral and bilateral ischaemia–reperfusion (IR) injury. Results. In the in vitro model, hypoxia (1% O2) induced a significant degree of PTC apoptosis, which was substantially reduced by co-incubation with EPO at 24 h (vehicle 2.5±0.5% vs 25 IU/ml EPO 1.8±0.4% vs 200 IU/ml EPO 0.9±0.2%, n = 9, P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sunscreen skin penetration and safety assessment should be considered together in order to ensure that in vitro cytotoxicity studies examine relevant doses of these organic chemical UV filters to which viable epidermal cells are realistically exposed. In this study, we sought to determine whether sufficient topically applied sunscreens penetrated into human viable epidermis to put the local keratinocyte cell populations at risk of toxicity. The penetration and retention of five commonly used sunscreen agents ( avobenzone, octinoxate, octocrylene, oxybenzone and padimate O) in human skin was evaluated after application in mineral oil to isolated human epidermal membranes. Sunscreen concentration - human keratinocyte culture response curves were then defined using changes in cell morphology and proliferation ( DNA synthesis using radiolabelled thymidine uptake studies) as evidence of sunscreens causing toxicity. Following 24 h of human epidermal exposure to sunscreens, detectable amounts of all sunscreens were present in the stratum corneum and viable epidermis, with epidermal penetration most evident with oxybenzone. The concentrations of each sunscreen found in human viable epidermis after topical application, adjusting for skin partitioning and binding effects, were at least 5-fold lower, based on levels detected in viable epidermal cells, than those appearing to cause toxicity in cultured human keratinocytes. It is concluded that the human viable epidermal levels of sunscreens are too low to cause any significant toxicity to the underlying human keratinocytes. Copyright (C) 2005 S. Karger AG, Basel.